Tag Archives: cerebral localisation

The strange case of the cerebro-graphometer

This week’s post continues a theme that’s been addressed in a couple of previous contributions: the drive to identify and chart brain lesions. Already, we’ve seen how brain slates and printed diagrams were used as a means to map the location of lesions found at post mortem, marking out pathological findings in permanent visual form. But what about less invasive methods – those that could be applied to the living patient?

Phrenology – making deductions about an individual’s personality or state of mind by examining the shape of the skull – is generally agreed to have been waning in popularity by the late 19th century. Its basic tenets, however, could still be seen within localisation theory, as mental diseases were increasingly viewed as the result of somatic, localised lesions.

This melding of phrenological and localisation theory is wonderfully illustrated by an instrument described in the British Medical Journal in 1896. At a meeting of the Royal Academy of Medicine in Ireland that February, Robert H. Cox described a new method of localising brain lesions: his ‘cerebro-graphometer’.

Robert H. Cox’s ‘cerebro-graphometer’.

The instrument was employed alongside ‘a diagrammatic map of a hemisphere of the brain, prepared from readings made by the use of the same instrument on the cadaver and casts of the brain in situ’ (casts were often taken of the brain or inside of the skull at post mortem for museum and teaching purposes). The brilliantly-named cerebro-graphometer consisted ‘of the mechanical device, technically known as “lazy tongs”’. Despite its rather sinister appearance, it was met with positive acclaim by members of the meeting, who were impressed with its simplicity and durability (it could be rendered aseptic for the next use by boiling, for example).

By April 1897, Cox was able to report that the instrument, now perfected, was being manufactured by the surgical instrument makers Arnold & Sons. Describing the cerebro-graphometer’s use, localisation became an activity with its own specialised, performative ritual:

‘Localising is performed as follows: Extend the instrument and apply the end of the lettered loop, marked V, to the occipital protuberance and the other end to the glabella, then press down the loop to the scalp in the middle line and close the circle round the head, so that the 10 on the numbered loop will lie on the lettered loop. Consult the chart for the bearings, and place the number 10 on the letter of longitude, when the number of longitude will rest over the part sought for.’

Once in position, ‘to find any given point – say Broca’s lobe – it was only necessary to consult the map or list of indices for the bearings’. (Keep in mind that one of the selling points of this was the instrument’s ‘simplicity’; the mind boggles at the complexity of alternative methods…)

Diagram for use with Cox’s device.

Like all the best stories, however, there was a minor scandal to come. A month after Cox’s triumphant article in April, a letter to the BMJ begged to inform him that ‘the instrument has been forestalled, for I have possessed for the last ten years an instrument so exactly like his that the illustration might have been taken from it’. The author, William Warwick Wagstaffe, called his own instrument a ‘brain mapper’ (a name, he noted, that he ‘certainly prefer[red] to “cerebro-graphometer”’) and it had been made by Maw & Sons in 1886. Upon its production, Wagstaffe had distributed it to several colleagues for their observations, but ill health had prevented him from collating the final results (after a ‘breakdown in health’ in 1878, he was never to return to active work, having previously acted as Senior Assistant Surgeon and Lecturer in Anatomy at St Thomas’s Hospital in London).

William Warwick Wagstaffe’s ‘brain mapper’.

Cox maintained that the cerebro-graphometer was superior to the brain mapper as ‘[o]nly one motion is necessary to directly localise any given point on the surface of the brain’. Neither Cox’s nor Wagstaffe’s device appeared to enjoy great fame, however. References are almost entirely absent from contemporary journals, and one imagines that the simplicity of the design was its downfall, with individual doctors crafting their own versions rather than buying a more costly one via a surgical instrument retailer. One wonders what happened to those few that were properly manufactured (I have a ridiculous mental image of the lab Christmas party, full of tipsy doctors wearing them as party hats). Perhaps some examples survive in medical museums?

Unlike some other instruments discussed on this blog, the cerebro-graphometer (or brain mapper, if you’re in the Wagstaffe camp) was interesting in its ability to be applied to both the living and the deceased patient. Missing from Cox’s and Wagstaffe’s accounts, however, is the practical issue of how such instruments were employed in a hospital context. Other than reference to the difficulty of hair being caught within the instrument’s folds, we know nothing of how patients actually experienced the process. Perhaps they were fascinated, as William Lauder Lindsay noted of some of his patients when he took blood samples – they badgered him with questions about what their samples revealed, even persuading him to demonstrate his own blood under the microscope. For some, the experience may have been more disturbing, especially if one had deduced that such examinations were also made upon the dead. For others, it was perhaps just another in a long list of physical investigations that were simply a tedious nuisance.

Though it’s difficult to uncover the patient experience via brief reports like those found in the BMJ, looking at evolving investigative techniques can – as Jacyna and Casper note in The Neurological Patient in History – show us ‘how the patient has been constituted in the era of modern medicine’. By asking this question, we can in turn find out much about the knock-on effects of new medical technologies and practices: on theory, everyday routines, and therapeutic efforts. Unfortunately for Cox and Wagstaffe, it seems that their devices were limited in their impact – yet they remain for me an intriguing illustration of medical thinking and innovation in the last part of the 19th century.

Further reading

Robert H. Cox, ‘A New Method for Localising Brain Lesions’, British Medical Journal (3 Apr. 1897).

Robert H. Cox, Correspondence: ‘A New Method of Localising Brain Lesions’, British Medical Journal (30 Oct. 1897).

L. Stephen Jacyna and Stephen T. Casper (eds.), The Neurological Patient in History (NY: University of Rochester Press, 2012).

‘Reports of Societies’, British Medical Journal (21 Mar. 1896).

W. W. Wagstaffe, ‘A New Method of Localising Brain Lesions’, British Medical Journal (1 May 1897).

– Jennifer Wallis

NOTE All reasonable effort has been made to seek permissions for the images contained within this post. If you are the copyright holder, please contact us.